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MULTIDIMENSIONAL SCALING ANALYSIS OF CONTROLLERS' PERCEPTIONS OF 

AIRCRAFT PERFORMANCE CHARACTERISTICS 

The domain of an en route air traffic control 

specialist (ATCS) is the sector. Sectors are defined 
both horizontally and vertically "and may overlie or 

underlie airspace controlled by another sector or 

approach control facility" (National Airspace Sys- 

tem, 1995, p. 5:19). Note the irregular shape of the 
sector shown in Figure 1. This sector lies adjacent to 

others like one piece in a three-dimensional jigsaw 
puzzle. No two sectors are identical, and the relative 
complexity of each involves a complex interaction of 

sector geometry and traffic-related factors (Buckley, 

DeBaryche, Hitchner, & Kohn, 1983). Physical as- 
pects (e.g., size, orientation of conflict points, airway 

configuration, terrain, limitations of radio or radar 

coverage) are considered in conjunction with traffic 
characteristics when sector boundaries are defined. 
This is due to the relationship between sector com- 
plexity and controller workload. "As contributors to 

task demand, sector characteristics can be thought of 

as workload generators. Workload is the controllers' 

subjective response to the 'objective' conditions which 

create sector complexity" (Mogford, Murphy, Roske- 

Hofstrand, Yastrop, & Guttman, 1994, p. 4). 
During the validation stage of an investigation of 

controller workload models, five air traffic control 

specialists were asked to evaluate the relative diffi- 

culty of a set of sectors. They were also asked to 
provide explanations as to why they believed the 
sectors differed in complexity. Aircraft mix was one 
of 12 "difficulty factors" cited (Robertson, Grossberg, 

& Richards, 1979). These same factors were later 
used as the basis for an investigation of sector com- 

plexity relative to operational errors.1 A group of 97 

controllers and supervisors from the Chicago Air 

Route Traffic Control Center (ARTCC) was asked to 
estimate the degree to which each factor contributed 

to the complexity of their particular sector or area of 
specialization. Notably, aircraft mix was one of the 
highest-ranked factors in ten of the 30 sectors sampled 

(Grossberg, 1989). 

Figure 1. Air Route Traffic Control Center Sector Example 

An operational error occurs when an ATCS allows two or more aircraft to violate separation minima. 



At the time, it was assumed that aircraft mix 
referred to problems associated with the disparate 
performance capabilities of propeller and jet aircraft. 
This assumption is consistent with sector design 
principles included in Appendix 2 of Order No. 
7210.46, which imply that complexity is increased 
when aircraft with "vastly different performance char- 
acteristics" occupy a controller's airspace (Federal 
Aviation Administration, 1984, p. 2). Nevertheless, • 
this interpretation may be incomplete or inaccurate. 
For example, what are the parameters of "vastly 
different?" What constitutes aircraft mix from a 
controller's perspective? Participants were never asked 
to elaborate on the salient features of aircraft mix in 
either of the studies cited. Consequently, it is possible 
that each controller's definition was not uniform. 

Results of an investigation conducted at the Jack- 
sonville ARTCC (Mogford, et al., 1994) offer lim- 
ited insight into the potential components (or 
correlates) of aircraft mix. In the preliminary stages of 
the study, aircraft mix was defined as the proportion 
of commercial, private, and military traffic. The 
number of aircraft flying Visual Flight Rules (VFR) 
versus Instrument Flight Rules (IFR) was also con- 
sidered to be a distinct factor. A subject matter expert 
who provided detailed factor definitions introduced 
engine type as an element of aircraft mix. In the final 
list of 19 "candidate" sector complexity factors, air- 
craft mix was defined as "VFR, IFR, props, turbo- 
props, and jets, etc." (p. 37). Although this definition 
seems extensive, it may be neither comprehensive nor 
accurate. That is, verbal representations of aircraft 
mix may be only marginally related to the underlying 
dimensions of interest (see Payne, Bettman, & 
Johnson, 1993). 

It is logical to assume that the availability of 
information would influence controllers' underlying 
representations as well as the expression of those 
representations. For example, engine type may be an 
excellent predictor of aircraft performance capabili- 
ties, but controllers do not have direct access to this 
information. On the other hand, controlled aircraft 
are accompanied by a datablock tag on the radarscope 
that displays, among other items, the aircraft identi- 
fier (AID). From this information, controllers may 
determine whether an aircraft is commercial, mili- 
tary, or private. For instance, commercial AIDs are 
recognizable because they correspond to flight num- 
bers (e.g., AAL1550 represents American Airlines 

flight 1550). Military AIDs consist of a combination 
of pronounceable words and numbers, whereas pri- 
vately-owned aircraft are distinguishable because they 
commonly fly under their aircraft registration num- 
ber. Though all aircraft have registration numbers, 
only private (general aviation) aircraft are identified 
by them. Whether an aircraft is commercial, military, 
or general aviation is a fairly accurate predictor of 
engine type (ergo performance). Approximately 79% 
of all commercial aircraft are jets (International Civil 
Aviation Organization, 1995). Many military air- 
craft are also jets. In addition, military AIDs often 
indicate whether the aircraft is a high-performance 
jet or a larger aircraft designed for air transport. In 
contrast, general aviation aircraft are often, though 
not always, smaller, propeller-driven aircraft. 

In addition to the AID, controllers are provided 
with partial information regarding an aircraft's weight 
class. There are three weight class categories: Heavy, 
Large, and Small. Asingle character (e.g., H), printed 
on the flight progress strip and available in the flight 
plan readout display, flags aircraft in the Heavy 
weight class. The reason controllers are provided 
with this information has to do with procedures 
associated with wake turbulence. However, weight 
class is also an imprecise indicator of engine type. Jets 
are somewhat more likely to be Heavy than are other 
engine types. Weight class may also serve as a predic- 
tor of climb and descent capabilities. 

At best, AIDs and Heavy prefixes provide only a 
general indication of aircraft performance capabili- 
ties. However, controllers do have access to more 
specific information. For instance, aircraft type des- 
ignators are alphanumeric labels that indicate the 
make and model of an aircraft (e.g., a B737 is a 
Boeing Model 737, a C150 represents a Cessna 
Model 150, and a BE77 is a Beech Skipper). Desig- 
nators are printed on the flight progress strip and as 
part of the flight plan readout display. In addition, 
each aircraft's current speed is displayed on the 
datablock. Because fuel is expensive, most aircraft 
operate at average speeds that optimize fuel effi- 
ciency. As a result, controllers probably develop asso- 
ciations through repeated pairings of specific 
designators and average speed ranges. Simultaneously, 
broad classes of AIDs would be associated with both 
designators and speeds. A model of these proposed 
associations is provided in Figure 2. 



Legend 

Figure 2. Model of Prototype Development 

It would be parsimonious for controllers to de- 
velop prototypes based on this information, rather 
than rely on the recall of explicit ranges (Posner, 
Goldsmith, & Welton, 1967; Solso, 1991). The 
model in Figure 2 implies that performance-based 
prototypes would probably correspond to commer- 
cial, military, and private classifications, due to the 
salience and accessibility of the AID. Controllers' 
expectations of aircraft performance would then be 
based on comparisons with the prototypical aircraft 
within each category. It is likely that these groups 
would be characterized by graded membership and 
"fuzzy boundaries" because the performance of some 
aircraft would be more representative of the proto- 
type than others (see Schwartz & Reisberg, 1991). 
Thus, an aircraft might be characterized as "a slow 
commercial jet," or "an average commercial jet," or 
"just like a commercial jet." 

The model in Figure 2 also illustrates how air 
traffic controllers might use AIDs to predict aircraft 
performance. If broad classes of AIDs are associated 
with prototypes, an aircraft's AID could be used to 
calibrate performance estimates when the designator 
is not an effective cue (i.e., when the aircraft is 
unfamiliar). In Figure 3, the current speed of the 
unknown aircraft designator is 325 knots. A com- 
mercial AID would predict speed capabilities ranging 
from 325 to 500 knots, suggesting that the aircraft 
was cruising well below maximum. On the other 
hand, a general aviation AID would indicate the 
aircraft was operating at top speed. 

The availability of information inherent to both 
proposed models brings up an important point. Air- 
craft mix has been proposed as a traffic-related sector 
complexity factor. In other words, controllers have 
attributed their perceptions of increased workload to 
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Figure 3. Model of Aircraft Performance Prediction When the Designator 
is Unfamiliar 

"aircraft mix," which they believe to be characteristic of 

certain sectors. However, humans tend to confuse 

inference with observation (e.g., Brown, Deffen- 

bacher, & Sturgill, 1977). It is doubtful that control- 
lers are aware of all the factors contributing to their 
subjective experience. It is possible that one of the 

components of aircraft mix involves inadequate or 
inefficient cues for the prediction of aircraft perfor- 

mance. Controllers might be using information de- 
rived from a number of sources to estimate the true 
predictors of performance (e.g., engine number, en- 

gine type, weight class) to which they have no direct 

access. Workload in complex tasks has been related to 
the number of information sources and the number 

of cues (Proctor & Dutta, 1995). Inadequacies of 
prediction cues, or increased workload due to mul- 
tiple information sources, might only be detectable 
under conditions in which the strain on the system 

exceeded a threshold; as would be the case in a low 
altitude sector with numerous aircraft of unknown 
performance characteristics. 

By presenting only aircraft designators as stimuli, 

it should be possible to evaluate the effectiveness of 
the designator as a retrieval cue for aircraft perfor- 

mance estimates (i.e., average speed, climb, and de- 
scent rates). These estimates may then be employed 

to examine controllers' perceptions of each aircraft's 
performance capabilities relative to other aircraft in 

the sample by using multidimensional scaling (MDS) 
analysis. MDS translates patterns of responding into 
patterns of elements in a dimensional space. These 

patterns should provide evidence of knowledge-based 
prototypes. If prototypes are based on aircraft perfor- 
mance, adherence to the commercial, military, and 

private classifications would be subject to a consider- 
able number of exceptions. This would be particu- 
larly true for aircraft that are encountered frequently 
because knowledge of exceptions to rules is gained 

through experience. In summation, while the subtle- 
ties of graded membership and fuzzy boundaries 

characteristic of prototype-based groups would be 

lost by asking controllers directly to classify aircraft, 
the nuances of the underlying dimensions governing 

controllers' perceptions might be revealed through 

the use of multidimensional scaling. 



METHOD 

Participants 
Thirty en route air traffic control specialists partici- 

pated in the study. All were full performance level (FPL) 
controllers meeting currency requirements. Six were in 
Oklahoma City as participants for an Air Traffic Selec- 
tion and Training (AT-SAT) test validation study con- 
ducted by the FAA. Additional data were provided by 
specialists from the Boston (N= 7) and Kansas City (N 
= 17) Air Route Traffic Control Centers. Volunteers 
were treated according to guidelines established by the 
American Psychological Association. All were assured 
complete anonymity and reminded of their right to 
terminate participation at any time. 

Six women and 24 men participated in the study. 
The mean age of participants was 40 with a standard 
deviation of 6 years, 4 months. As shown in Table 1, 
specialists had been at their current centers an average 
of 11 years, 10 months and had been certified as FPL 

Table 1 

Summary of Participants' Professional Experience* 

controllers for an average of 9 years, 8 months. 
Discrepancies between the number of years as an en 
route FPL controller versus number of years as an air 
traffic control specialist represent time spent in train- 
ing, in other areas, or at other facilities. 

It was important for participants to have experience 
with the different altitude levels because the limitations 
of some propeller-driven aircraft preclude flight at higher 
altitudes. Of the 25 specialists who responded to items 
pertaining to sector stratification, 100% had worked 
high sector strata, 96% had worked low altitude, and 
80% had worked ultra-high sectors. Though most 
acquired their experience at a single center, one special- 
ist had worked at two centers, and another at three. The 
number of centers represented by participants was cru- 
cial for the generalizability of the results. Air Route 
Traffic Control Centers and the number of responses 
associated with each are listed in Table 2. These centers 
constitute 40% of the ARTCCs in the continental 
United States. 

Mean SD Minimum Maximum 

Amount of Time Yrs. Mos. Yrs. Mos. Yrs. Mos. Yrs. Mos. 

In Current Area 9 1 5 4 0 1 25 0 

At Current ARTCC 11 10 4 8 1 9 25 0 

As En Route FPL 9 8 4 8 0 7 23 0 

As ATCS 15 2 6 9 3 4 35 0 

Summary statistics were calculated in months and converted to years/months. 

Table 2 

Air Route Traffic Control Center Experience 

Air Route Traffic Control 
Center 

Number of Responses 
(N = 30) 

Albuquerque 

Atlanta 

3 

1 

Boston 7 

Houston 2 

Jacksonville 1 

Kansas City 

Miami 

17 

1 

New York 1 

Total Responses 33 



Materials 
The Aircraft Familiarity Questionnaire (AFQ). The 

AFQis composed of 210 questions (excluding com- 
ments) that can be completed in 30-45 minutes. The 
questionnaire is divided into two sections: Aircraft 
Performance Characteristics and Familiarity. 

In the Aircraft Performance Characteristics sec- 
tion of the AFQ, controllers were asked to supply 
speed, climb rate, descent rate, weight class, engine 
number, and engine type estimates for each of 30 
aircraft. Space was also provided for comments re- 
garding turn rate, limitations due to inclement 
weather, or any other performance-related informa- 
tion participants might have wished to add. 

In the Familiarity section, volunteers were asked 
to estimate the frequency with which they had en- 
countered the aircraft within the previous six months. 
Aircraft never or very rarely seen were to be classified 
Level 1. Aircraft were to be classified as Level 2 if the 
controller might not have seen one for several days, or 
if aircraft of this type are only found in certain 
sectors. Aircraft encountered daily in virtually all 
sectors were to be classified Level 3. A sample copy of 
the AFQ is provided in Appendix A. 

AFQ aircraft list selection. The AFQ comprises 30 
aircraft drawn from an initial pool of 403 designators 
extracted from the aircraft characteristics record of 
New York Center's (ZNY) Adaptation Control Envi- 
ronment System (ACES) tape. For the 30 aircraft in 
the AFQ to be truly representative, it was important 
to begin with a list of aircraft that might be encoun- 
tered in any given airspace. Therefore, the New York 
list was compared with aircraft characteristics records 
from the Los Angeles (ZLA) and Cleveland (ZOB) 
centers. All three records were relatively recent updates, 

ranging from June 1996 (ZLA) to January 1998 
(ZNY). Only designators found in all three lists were 
retained. Further reduction of the remaining 314 
aircraft types was accomplished in two phases. Phase 
1 elimination addressed the availability of informa- 
tion and the distinctiveness of the stimuli. Phase 2 
focused on maintaining a balance of commercial, 
military, and private aircraft, while ensuring that 
some aircraft in the sample would be less familiar 
than others. In other words, Phase 2 was about 
diversity and variability. 

As shown in Table 3, most Phase 1 deletions were 
due to lack of inclusion in Appendix A of the 
7110.65L. The 7110.65L is the most recent version 
of the air traffic control manual (FAA, 1998). There- 
fore, all air traffic control specialists would have 
access to this information. This would not be true of 
aircraft not listed in the 7110.65L. Multiple designa- 
tors and "cross-designators" (i.e., designators that 
have been reassigned) were also eliminated to avoid 
stimulus ambiguity. For example, in the recent adop- 
tion of new designators aircraft with old designators 
C135, KC35, KE35, and KR35 were grouped under 
the new designator C135. Conversely, an aircraft 
previously designated as T35 were assigned to either 
the new designator PILL or PA28. 

Phase 2 list reduction began with a search of log 
reports generated by the National Airspace System 
(NAS) Data Analysis and Reduction Tool (DART). 
Log reports contain the aircraft identifier and type of 
every aircraft crossing a given airspace. A 20-minute 
sample of the July 1996 log report from the New York 
ARTCC was examined for the incidence of AIDs 
corresponding to the 148 aircraft types remaining 
after Phase 1 deletions. There were 14 aircraft types 

Table 3 

Phase 1 List Reduction: Frequencies and Exclusion Criteria 

A/C Deleted 

166 

Exclusion Criteria 

82 Notinthe7110.65L 

64 Multiple Old Designators/ One New Designator 
8 Multiple New Designators/ One Old Designator 
4 "Cross-Designators" 

7 Redundancies (Both Old and New Designators) 
1 Test Dummy 

Total Deletions 



detected more than once within the 20 minutes 

sampled (e.g., more than one B757 crossed the air- 

space). In that same time frame, 41 of the aircraft 

types appeared only once or twice. The 93 aircraft 

types that did not appear in the New York log report 

were excluded from further consideration. 
The next step involved examination of the July 

1996 log report from the Atlanta ARTCC to deter- 

mine the frequency of occurrence of the 55 remaining 

aircraft types. The sample time frame was extended to 
30 minutes to ensure that a sufficient number of 

aircraft would be selected. Ten of the 14 designators 

with multiple occurrences in the New York log report 

were also detected more than once in Atlanta's air- 
space. These ten designators, representing frequently- 

encountered aircraft, were included in the final list. 

Ten of the 17 general aviation aircraft that had been 
detected only once or twice in the 20-minute New 
York sample were retained for the final list by ran- 

domly sorting them and selecting the first ten. Ten 

military aircraft, also with minimal frequency of 
occurrence, were selected via the same process. 

Aircraft Familiarity Data Analysis Tool (AFDAT). 

Completed AFQ forms were transferred to an elec- 
tronic format using the AFDAT, a Visual Basic 
program developed to facilitate data entry and guard 

against error. For example, two versions of the AFQ, 
which differed in the order in which the aircraft were 

presented, were given to participants. The AFDAT 
"Version" option allows for items to be entered 
according to version order, and automatically sorts 

the aircraft alphabetically for output. AFDAT code 
also prohibits entry of any number outside the pos- 
sible range of values for categorical variables. 

Evaluation of weight class, engine number, and 

engine type responses are performed automatically by 
AFDAT code, thereby eliminating the possibility of 

scoring errors. In addition, the AFDAT generates a 
categorical variable describing the exact nature of the 

error (e.g., a turboprop mistaken for a jet, a piston 
mistaken for a turboprop) when an incorrect engine 

type response is detected. The AFDAT returns a 
single speed, climb, and descent rate for each aircraft. 
When two values are entered (e.g., a range of speed 
capabilities), AFDAT code automatically computes a 

mean estimate. 

Design 
Multidimensional scaling refers to a group of 

descriptive procedures that transform data into 

mapped elements in one or more spatial dimensions 

(Kruskal & Wish, 1978). Theoretically, the configu- 

ration describes the underlying dimensions upon 

which judgments were based. The appropriate data 
for MDS analysis are proximities, numbers that indi- 

cate the similarity or dissimilarity of a set of objects. 
Proximities may be obtained directly, or derived 

mathematically from a set of variables. In this appli- 

cation, a single matrix of dissimilarity measures was 
computed from summary estimates of performance 

characteristics (i.e., mean speed, climb, and descent 

rates). The squared Euclidean distance between vec- 
tors of estimates was computed for each aircraft. The 

distances, therefore, represent composite measures of 
controllers' perceptions of each aircraft's capabilities 

relative to other aircraft in the sample. For example, 
if summary estimates for the first and second aircraft 

were: 

Aircraft 1 
Aircraft 2 

Speed Climb      Descent 
2 
5 

3 
6 

The squared Euclidean distance for these aircraft 

would be: (1-4)2 + (2-5)2 + (3-6)2 = 27 (D. Nichols, 
personal communication, November 18, 1998). 

Aircraft sample size was evaluated prior to data 

collection, and the number of aircraft was limited to 
30 so that the time required to complete the ques- 
tionnaire remained under one hour. Early in the 

planning stages, it was understood that volunteers 
would be donating their time and expertise gratis, 
and it was considered to be unreasonable to request 

any more than 30 to 45 minutes of time. 
In addition to performance estimates, participants 

were asked to provide information regarding a num- 

ber of variables to be used for interpretation of the 

MDS model (i.e., engine number, engine type, and 
weight class). Tests of accuracy for these variables 
might also prove highly informative. Estimates of 
frequency of encounter for each aircraft were col- 

lected as well. Research has shown that humans are 
relatively accurate with such judgments (Vlek, 1970; 

as cited in Tversky & Kahneman,   1973). These 

¥-' 



"familiarity ratings" were used in the multiple regres- 
sion interpretation of the stimulus configuration and 

to assess controllers' certainty regarding all other 
estimates. 

Procedure 

For the six participants drawn from the AT-SAT 

pool, testing was conducted at the Assessment Center 

located on the grounds of the Mike Monroney 

Aeronautical Center in Oklahoma City, Oklahoma. 

Testing took place from April 1 to 23, 1998, after 

participants had completed the AT-SAT experimen- 

tal protocol. The 15% who volunteered to remain 

and take the AFQ were given consent forms to read 

and sign. Once written consent had been obtained, 

packets were distributed. Packets consisted of bio- 

graphical data forms, instructions, and one of two 

versions of the AFQ. As soon as the questionnaires 

were finished, the specialists were debriefed. 
Data collection at the Boston and Kansas City 

ARTCCs took place between April 28 and May 24, 
1998. Volunteers meeting subject criteria were solic- 
ited by a representative from each center. Both repre- 
sentatives had been thoroughly briefed on important 

points of procedure, particularly with regard to ob- 
taining written consent prior to dispensing the pack- 

ets. Though test administration at the centers was 

somewhat less formal, the basic experimental proto- 
col remained unaltered. 

RESULTS 

Data Management 

Text files generated by the AFDAT program were 

aggregated to create a new data file. Observations in 
the aggregated file represent summary APC scores 

(weight class, engine number, engine type) and per- 

formance estimates (speed, climb, and descent) for 
each aircraft. Prior to aggregation, distributions of 

performance estimates were examined separately for 
each of the 30 aircraft in the AFQ. Departures of 
skewness and kurtosis for all 180 distributions (90 

scores, 90 estimates) were reduced to a maximum of 

3.36 (skewness) and 3.38 (kurtosis) standard devia- 
tions from that expected of a normal distribution (see 

Tabachnik & Fidell, 1989, p. 72) by the removal of 
outliers and extreme values (see SPSS Inc., 1990, p. 
174 for criteria). After deletion, tests of normality 

indicated the mean was a sufficient measure of cen- 
tral tendency for all observations. Summary observa- 

tions and the number of cases they were based upon 

are listed in Appendix B. Observations with A^< 30 
resulted from missing values, deletion, or both. 

Missing Values 

Controller characteristics. The total number of 

missing values was computed for each participant. 

This variable was compared with biographical infor- 

mation stored in the BIODAT data file generated by 

the AFDAT program. The distributions of chrono- 
logical age (in years), time spent as an air traffic 

controller (in months), and total number of missing 

values approximated normality in terms of skewness 

and kurtosis. The Pearson product-moment correla- 

tion coefficient {N = 29) found no reliable linear 

relationship between missing values and chronologi- 

cal age (r = .12), or time spent as an air traffic 
controller (r = .10). 

Aircraft characteristics. The total number of miss- 
ing values was computed for all variables and com- 
piled by aircraft designator. This summary variable 

was merged with the existing AFDAT data base for 

comparison with APC measures. The distribution of 

mean Familiarity ratings sufficiently approximated 

normality for parametric analysis; the distribution of 
total missing values did not. Departures of skewness 

(Skewness = 2.23; S.E. Skewness = .43) and kurtosis 
(Kurtosis = 4.59; S.E. Kurtosis = .83) were improved 
with a square root transformation (Skewness = 1.38; 
Kurtosis = 1.33). Nevertheless, a considerable num- 

ber of outliers remained. Sample size contraindicated 
deletion of cases, so Spearman's correlation coeffi- 
cient for ranked data was selected as the appropriate 

measure of association. Ranking invariably results in 

a loss of information, with a subsequent loss of 
power. A relatively small sample size (N = 30) further 

increased the risk of a Type II error. In spite ofthat, 
ranks or total missing values demonstrated a signifi- 
cant inverse relationship with those of mean Famil- 

iarity ratings (r = -.65, p < .01). Missing values 

demonstrated a reliable positive association with the 

percentage of incorrect engine type tesponses (r = 
.60, p < .01), but not with other APC measures. As 

might be expected, mean Familiarity ratings and 
incorrect engine type responses were significantly 
and negatively telated (r = -.52, p < .01). 



Multidimensional Scaling 
Squared Euclidean distances were calculated from 

standardized speed, climb, and descent rate summary 
estimates and submitted to classical, nonmetric MDS 
analysis. Both two- and three-dimensional models 
demonstrated excellent fit. Squared correlations de- 
scribe the relationship between the original distances 
and the derived stimulus coordinates: Both solutions 
produced an r2 = .99. Kruskal's stress 1 formula is 
sometimes referred to as a "badness-of-fit" measure 
because larger values indicate poorer fit. The two- 
and three-dimensional solutions yielded stress values 
of .0098 and .0078, respectively. In the best of all 
possible models, stress equals zero. 

Selection of the appropriate dimensionality con- 
centrated on issues of parsimony and interpretability. 
Intercorrelations of stimulus coordinates in Table 4 
reveal that Dimension 1 remained stable (r = 1.00) 
regardless of dimensionality. Dimension 2 was rela- 
tively unchanged as well (r = -.97). Examination of 
stimulus coordinates and regression analysis failed to 

Table 4 

uncover any distinctive, interpretable features of the 
added dimension. Because a higher dimensionality is 
of little use if it contributes nothing to the interpre- 
tation of the solution (Kruskal & Wish, 1978), two 
dimensions were deemed sufficient. 

The most objective technique available for dimen- 
sional interpretation is the regression method. Variables 
believed to correspond with the stimulus configuration 
are regressed on vectors of coordinates. According to 
Kruskal and Wish (1978), two conditions are necessary 
for satisfactory interpretation of a dimension. First, the 
multiple correlation must be extremely high (correla- 
tions in the .90s are recommended, although correla- 
tions in the .70s will suffice). As shown in Table 5, only 
engine type (R = .92) and weight class (R = .80) achieved 
the recommended degree of association with the dimen- 
sions. The percentage of incorrect engine type responses 
produced an R = .65. Although the magnitude of this 
association is less than the recommended level, signifi- 
cance exceeds the minimum requirement of .01 (Kruskal 
&Wish, 1978, p. 39). 

Intercorrelations of Multidimensional Scaling Model Stimulus Coordinates for Two- and Three- 
Dimensional Solutions (N = 30) 

Dimension 1 
1 Dimensionl (of Two) 
2 Dimension 2 (of Two) 
3 Dimension 1 (of Three) 
4 Dimension 2 (of Three) 
5 Dimension 3 (of Three) 

.05 1.00* .16 -.21 
.07 -.97* -.75* 
— .15 -.22 

  .65* 

Correlation is significant at p < .01 level (2-tailed). 

Table 5 

Summary of Multiple Regression Analyses Used to Interpret Dimensional Characteristics of the 
Two-Dimensional MDS Modela 

Criterion R ff F P # Ä 
Engine Number .51 .26 4.65 .02 -.11 .50 
Percent Incorrect: Engine Number .26 .07 .99 .38 -.24 -.10 

Engine Type .92 .85 78.12 .000 -.84 .43 

Percent Incorrect: Engine Type .65 .42 9.75 .001 .62 -.22 

Weight Class .80 .63 22.59 .000 -.41 .70 
Percent Incorrect: Weight Class .24 .06 .81 .45 -.23 -.05 

AFQ Familiarity Rating .37 .13 2.08 .15 -.02 .37 

Square Root of Total Missing .37 .14 2.17 .13 .28 -.26 
Bold items represent significant associations. 



The second condition required for a satisfactory 
interpretation is that the criterion must have a high 
regression weight on the dimension. Standardized 
regression weights show that Dimension 1 was related 
to engine type (ß] = -.84) and the percentage of incorrect 
engine type responses (/?, = .62), whereas Dimension 2 
was associated with weight class (ß 2 - .70). Table 6 
contains a list of aircraft designators ordered by Dimen- 
sion 1 coordinates. The relationship between engine 
type and the arrangement of elements along this dimension 

Table 6 

is evident. The association between modal engine type and 
mean speed estimates (r = ,86,/x .01) is also apparent. 
Notice that the proportion of errors increases around 
"fuzzy boundaries" of engine type estimates. 

Table 7 provides information about the exact nature 
of engine type errors. Most errors (60%) involved 
confusion between turboprops and piston-driven air- 
craft. Specialists were nearly twice as likely to mistake a 
turboprop for a jet than to mistake a piston-driven 
aircraft for a jet. Participants were least prone to mistake 
a jet for any other kind of aircraft. 

Aircraft Type Designators, Engine Type Estimates, Percentage of Engine Type Estimates 

Incorrect, and Speed Estimates Ordered by Dimension 1 Coordinates 

Designator Engine Type Percent Incorrect Speed Estimate 

C208 Piston 62% 177 
BE36 Piston 7% 163 
BE58 Piston 20% 191 
AC50 Piston 47% 196 

PA46 Piston 41% 203 

V10 Turboprop 48% 224 

E120 Turboprop 14% 258 

SF34 Turboprop 7% 253 

C2 Turboprop/Jet * 64% 320 

D328 Turboprop 25% 272 

JSTB Turboprop 39% 305 
C97 Turboprop 75% 376 
C560 Jet 3% 393 

MD80 Jet 0% 453 

C141 Jet 10% 450 
B52 Jet 3% 475 

A3 Jet 19% 377 

L101 Jet 3% 492 

MD11 Jet 0% 478 

A310 Jet 0% 461 

A300 Jet 0% 465 
A320 Jet 0% 472 

B757 Jet 0% 474 

B767 Jet 0% 480 
C650 Jet 0% 472 

LJ55 Jet 0% 464 

HAR Jet 0% 473 

F111 Jet 0% 500 

F16 Jet 0% 500 

T38 Jet 0% 488 
' Bimodal 
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Table 7 

Frequencies and Percentages of Specific Engine Type Errors 

Description of Error Frequency Percent 

Turboprop Mistaken for Piston 
Piston Mistaken for Turboprop 
Turboprop Mistaken for Jet 
Piston Mistaken for Jet 
Jet Mistaken for Turboprop 
Jet Mistaken for Piston 

35 
34 
23 
14 
6 
3 

30 
30 
20 
12 
5 
3 

Total 115 100 

The relationship between weight class and Di- 
mension 2 was not as straightforward as that of 
engine type and Dimension 1. Estimates of weight 
class were related to those of climb rates (r = .40) and 
descent rates (r = .41) at thep < .05 level of signifi- 
cance, but weight classes were not evenly distributed 
along a continuous dimension. Table 8 contains a list 
of aircraft ordered by Dimension 2 coordinates, 
separated according to their position in the four 
quadrants of the stimulus configuration map (see 
Figure 4). Organized in this manner, at least three 
distinct groups emerge: (a) heavy and large jet aircraft 
with climb and descent capabilities greater than 
2100 feet per minute (fpm) but less than 3000 
fpm, and average cruising speeds greater than 450 
knots,(b) small turböprops and pistons with slower 
cruising speeds and somewhat limited climb and 
descent capabilities, and (c) high-performance jets. 

DISCUSSION 

Visual examination of the stimulus configuration 
map, shown in Figure 4, reveals three clusters of 
aircraft. At first glance, these groups appear to corre- 
spond to commercial, military, and private classifica- 
tions. For instance, aircraft in the upper-left region 
are predominantly commercial air carriers. The lower- 
left area consists primarily of military aircraft, whereas 
general aviation aircraft dominate the lower-right 
quadrant. Upon closer examination, however, the 
perception of discrete categories must be dismissed. 
By definition, categories have boundaries, and all 
elements within the boundary belong equally to the 
group (Schwartz & Reisberg, 1991). Therefore, a 

categorical interpretation cannot account for the 
small cluster of three aircraft in the upper-right 
quadrant. Neither can it explain the presence of civil 
aircraft in the lower-left area, nor the number of 
military aircraft scattered throughout the configura- 
tion. Clearly then, a strict categorical interpretation 
is insufficient. 

One solution may be prototype-based categories, 
as described by Schwartz and Reisberg (1991), that 
are not absolute. Prototypes are characterized by 
graded membership and fuzzy boundaries. That is, 
some members of the group are more representative 
of the prototype than others. The systematic progres- 
sion of participants' speed estimates along Dimen- 
sion 1, shown in Table 6, is typical of the graded 
membership often associated with prototypes. Ranges 
of climb and descent rates, shown in Table 8, also 
suggest graded membership. 

The position of the C650 and LJ55 in the stimulus 
configuration suggests graded membership as well. 
Speed estimates of the C650 and LJ55 were similar to 
other high-performance aircraft, though not to the 
same degree as military jets situated in the far left 
corner of the configuration. Participants' speed esti- 
mates for these aircraft were comparable to manufac- 
turers' published cruising speeds. In addition, speed 
estimates for these aircraft had below-average stan- 
dard deviations. However, it should be noted that 
modal weight class estimates for the C650 and LJ55 
were incorrect: Estimated to be Large aircraft, both 
are actually in the Small weight class category. Some 
participants greatly underestimated the climb and 
descent capabilities of these aircraft, resulting in 
standard deviations that were high, as compared with 
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Table 8 

Aircraft Type Designators, Estimates of Engine Type, • Weight Class, ♦ Speed, Climb and 

Descent Rates, Ordered by Dimension 2 Coordinates 

Designator Engine/ 
Weight 

Speed Climb Descent Designator Engine/ 
Weight 

Speed Climb Descent 

L101 JH 492 2284 2836 
B52 JH 475 2180 2341 
MD11 JH 478 2478 2583 
MD80 JL 453 2144 2315 
C141 JH 450 2320 2204 
A320 JH 472 2714 2530 
A300 JL 465 2580 2542 
A310 JL 461 2496 2665 
B767 JH 480 2893 2807 
B757 JH 474 2915 2738 

C560 JL 393 1985 2160 
C2 TL 320 1628 1522 
C97 TH 376 1892 2103 

C650 JL 472 3148 3166 
E120 TL 258 1347 1654 
C208 PS 177 981 1010 
PA46 TS 203 1180 1265 
V10 TS 224 1412 1425 
BE36 PS 163 1006 1193 
BE58 PS 191 1096 1250 
AC50 PS 196 1128 1309 

LJ55 JL 464 3502 3633 
SF34 TL 253 1673 1615 
JSTB TL 305 2052 2150 
D328 TL 272 1897 1847 

F111 JL 500   • 4005 4540 
A3 JL 377 2989 2627 
HAR JL 473 3961 4221 
F16 JL 500 4685 5333 
T38 JS 488 5007 5280 

' J = Jet, T = Turboprop P = Piston ; ♦ H = Heavy, L = L arge, S = Small 

the rest of the sample. It is possible that the position 
of the C650 and LJ55 might have been closer to other 
high-performance jets, had participants been aware 
of their actual weight class. 

Because prototypes are abstracted from stored in- 
formation, they will generally accommodate excep- 
tions (Posner, Goldsmith, & Welton, 1967). The 
proximity of the C650 and LJ55 to military aircraft 
such as the Fill andF16 demonstrates this phenom- 
enon to some degree. Even more dramatic is the 
appearance of military aircraft (i.e., the B52 and 
C141) within the tightly-knit cluster of commercial 
air carriers in the upper-left area of the configuration. 
Controllers' speed, climb, and descent rate estimates 
for the B52 and C141 were within the same range as 

other performance estimates in the group. According 
to the manufacturers' published averages, their esti- 
mates were extremely accurate. Thus, these civil and 
military aircraft were related by performance charac- 
teristics. 

Although prototypes allow for recognition of ele- 
ments that are unusual, research involving pattern 
recognition has demonstrated that well-learned forms 
do not accommodate as wide a range of distortion as 
less familiar ones (e.g., Petersen, Meagher, Chait, and 
Gillie, 1973). Most controlled aircraft are commer- 
cial jets. If controllers develop prototypes, the com- 
mercial jet would be analogous to a well-learned 
form, much as a triangle or a circle would be in 
pattern recognition.  One of the most distinctive 
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Figure 4. Derived Stimulus Configuration of the Two-Dimensional MDS Model 

features of the stimulus configuration map is the 
nearly inviolable line separating jets and other air- 
craft. The only exception is the C560, Cessna Cita- 
tion, a notoriously slow jet aircraft. According to 
self-report estimates, controllers were extremely fa- 
miliar with this aircraft. Of a possible 2.00, the C560 
had a mean Familiarity rating of 1.90. As might be 
expected, performance estimates for the C560 were 
fairly accurate. Therefore, it is likely that the C560 is 
proximal to turboprops and pistons because it does 
not perform within the same parameters as other jet 
aircraft. (As one controller stated, "The Citation is 
really a turboprop masquerading as a jet.") Thus, the 
Citation's placement in the configuration may be 
attributed to excessive distortion of a well-learned 
form (i.e., the commercial jet). 

Characteristics of the configuration indicate that 
controllers may develop prototype-based categories 
of aircraft, while interpretation of the multidimen- 
sional scaling dimensions suggests that the exemplars 

of these prototypes are performance-based. Multiple 
regression interpretation revealed a strong relation- 
ship between Dimension 1 and engine type. How- 
ever, this relationship does not appear to describe a 
simple "jets, turboprops, pistons" delineation. As 
mentioned previously, one of the most striking fea- 
tures of the configuration is the line of demarcation 
between jets, to the left, and all other aircraft types. 
Two distinct groups of jet aircraft are distinguishable 
in the stimulus configuration: Jets with climb and 
descent capabilities ranging from approximately 2200 
to 3000 fpm, and high-performance jets with climb 
and descent capabilities greater than 3000 fpm. The 
third group comprises propeller-driven aircraft with 
climb and descent capabilities ranging from approxi- 
mately 1000 to 2150 fpm. Two subgroups consisting 
of pistons and turboprops, barely visible in the stimu- 
lus configuration, are readily apparent in Table 6. 
These subgroups are separated by fuzzy boundaries, 
evidenced by patterns of engine type errors. The 
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nature of these errors, shown in Table 7, indicates that 
this "fuzziness" may be due to a lack of discriminability 
between the performance capabilities of turboprops and 
pistons. Apparently, propeller-driven aircraft are per- 
ceived as being more alike than different. 

The model of prototype development in Figure 2 
proposes that controllers develop expectations re- 
garding aircraft performance based on repeated pair- 
ings of aircraft designators and current speeds. Notably 
however, the significant inverse relationship between 
Familiarity and missing values indicates that the 
designator was an ineffective cue for the retrieval of 
performance characteristics when estimated frequency 
of encounter was low. Furthermore, aircraft with 
extremely low Familiarity ratings were not strongly 
associated with any group. The uncertainty repre- 
sented by the position of these elements in the con- 
figuration also demonstrates the .inadequacy of the 
designator as a sufficient cue. For example, the A3 
Skywarrior "floats" to the right of other high-perfor- 
mance military aircraft. The Skywarrior had the 
lowest Familiarity rating in the sample (.03) and one 
of the highest incidences of missing values. Standard 
deviations for all three performance estimates were 
notably high for this aircraft (see Appendix B). Con- 
trary to participants' average perception of 377 knots, 
the Skywarrior's published long-range cruising speed 
is approximately 450 knots. Individual speed esti- 
mates for this aircraft fluctuated widely, ranging 
from as low as 160 knots to as high as 550 knots. 
Variability in estimated climb and descent rates were 
similarly erratic. Estimates ranged from 750 fpm to a 
notably accurate 6000 fpm. 

The positions of the C2 and C97, located near the 
C560 in the upper-right area of the configuration, also 
appear to be due to uncertainty. Like the A3, the C2 and 
C97 had very low Familiarity ratings (.14 and .27, 
respectively). Furthermore, a considerable number of 
missing values was associated with both aircraft (see 
Appendix B). The C2 engine type estimate was bimo- 
dal. Approximately half of the participants thought the 
C2 might be a jet, while others accurately estimated the 
aircraft to be a turboprop. (The remainder guessed that 
the aircraft was piston-driven.) Participants' mean speed 
estimate for the C2 was 320 knots, although the maxi- 
mum speed of this aircraft is listed as only 300 knots. 
Participants (75%) inaccurately estimated the C97 to be 
a turboprop. The C97 is actually a piston-driven air- 
craft. Participants estimated the average speed of the 
C97 to be 376 knots. The published average cruising 

speed of this aircraft is 200 knots, and its maximum 
speed is only 350 knots. Standard deviations of speed 
estimates for both the C2 and C97 were higher than 
average as well. The average standard deviation for all 
speed estimates was approximately 48 knots. The stan- 
dard deviations for these two aircraft were 113 knots 
(C2) and 103 knots (C97). Climb and descent rate 
estimates demonstrated similar attributes. 

It seems likely that the position of the C2 and C97 
in the configuration reflects an average between inac- 
curately high estimates of performance and those 
characteristic of aircraft in the lower-right quadrant. 
Individual performance estimates appeared to be 
based on assumptions regarding the engine type of 
the aircraft. Participants who correctly estimated the 
aircraft's engine type were also more accurate in their 
performance estimates. The strength of the positive 
association between missing values and incorrect 
engine type responses, in conjunction with the in- 
verse relationship between missing values and Famil- 
iarity ratings, suggests that repeated exposure may 
increase the precision of engine type estimates. Pat- 
terns of responding associated with the C2 and C97 
indicate that the accuracy of engine type estimates 
may have a direct impact on the prediction of an 
aircraft's performance capabilities. 

CONCLUSIONS 

In the aggregate, the results of the analysis are 
compelling evidence supporting further investiga- 
tion into the efficacy of display cues for prediction of 
aircraft performance. It is interesting to note that 
controllers appear to have developed prototypes cor- 
responding to information that is not readily avail- 
able to them. This implies that prototypes might have 
been developed using multiple cues (i.e., AID, desig- 
nator, current speed) obtained from a number of 
sources (i.e., datablock, flight progress strip, flight 
plan readout). Although the accuracy with which 
participants estimated the capabilities of familiar 
aircraft indicates that controllers have managed to 
overcome the inadequacies of available cues, patterns 
of responding associated with unfamiliar aircraft 
suggest that this knowledge might have been pur- 
chased at a greater cost than necessary. 

It has been demonstrated that workload in com- 
plex tasks is related to the number of information 
sources, and the number of cues (Proctor & Dutta, 
1995). It logically follows that workload might be 
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reduced by providing more effective cues from a 
single source. Results of multiple regression interpre- 
tation of the dimensions underlying controllers' per- 
ceptions of aircraft groups suggest that the use of 
engine type and weight class might be beneficial. For 
example, a Heavy jet aircraft might be accompanied 
by an "HJ" on the datablock tag, proximal to the 
AID. The effects of these indicators could be tested in 
a simulated environment using control and experi- 
mental groups to compare subjective measures of 
workload and objective measures of performance 
associated with each condition. It is possible that 
enhancement of prediction cues, similar to the one 
suggested, might increase the efficiency of control- 
lers' decision making and decrease perceived workload, 
particularly in sectors with a high ratio of unfamiliar 
vs. familiar aircraft. 
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APPENDIX A 

Aircraft Familiarity Questionnaire (AFQ) 

1)        At how many En route Centers have you worked? (number of centers) 
Please list the centers you have worked at, beginning with the most recent: 

1)   
2)   
3)   
4)   

2) How long have you worked in your current area? 
  years      months 

3) How long have you worked at your current ARTCC? 
  years      months 

4) How many years and months (total) have you worked at an En Route Center as an FPL? 
  years      months 

5) Please indicate your total number of years as a controller. 
  years      months 

6) Please indicate all operations in which you have been an FPL (check all that apply) 
 En Route 
 Low 
 High 
 Ultra High 
 Terminal 
 Flight Service Station 
 Other 

7) When were you last certified or re-certified? 
  (year) 

OPTIONAL: 
1) Age        
2) Gender  
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Instructions 
The suggested strategy for both sections of the questionnaire is to "fly" through the aircraft 
types. Do not deliberate too long over your responses. Your initial response will probably be 
the most accurate. 

Section 1: Familiarity 
"Familiarity" is defined as the frequency with which you might encounter a particular aircraft in 
your airspace. For example, some controllers encounter a great deal of military or general 
aviation aircraft and are relatively familiar with them. These same aircraft might be unfamiliar 
to a specialist working a sector that generally handles commercial flights only. Level 1 aircraft 
are those you rarely or never see. If you might not come across a particular aircraft type for 
several days, or only when working certain sectors, that aircraft should be classified as Level 2. 
Aircraft types encountered daily in virtually all sectors are Level 3 aircraft. Simply mark the 
box corresponding to the level that best describes the frequency with which you have 
encountered each aircraft type over the past six months. 

Section 2: Aircraft Performance Characteristics 
Weight Class: Please choose from one of three basic weight classes: Heavy (H), 
Large (L), or Small (S). 

Speed: Please provide an approximate range of performance capabilities. (For example, a 
B737 generally cruises somewhere between 400 and 470 knots). It is not necessary to indicate 
whether your answer is expressed in Mach speed or knots, but feel free to circle the appropriate 
indicator located to the right of the answer blank. 

Climb Rate / Descent Rate: It is anticipated that you will possess general knowledge of 
aircraft climb and descent capabilities. If your answer is an average climb or descent rate, 
simply write a single value in the space. If you think of climb and descent rates in ranges, then 
write the range in the space provided. If you think only in terms of maximums, then write the 
value in the space and be sure to indicate that it is a maximum rate rather than an average. 

Engines: 
Type: Please choose from one of three basic engine types. The following abbreviations 
are provided only for your convenience. If you prefer, ignore the suggested 
abbreviations and write "piston" or "turboprop" or "jet." 

P = reciprocating, or piston-driven 
T = turboprop 
J = turbojet 

Number: If you are unsure, give it your best guess. 

Comments: Please write information regarding the aircraft's turn rate, limitations due to 
inclement weather, or other performance-related information in the space provided. 
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SECTION 1: FAMILIARITY 

Please check the box that corresponds to the level that best describes the frequency with which you 
have encountered each aircraft type over the past 6 months: 

Level 1: Aircraft rarely or never seen. 
Level 2: Aircraft you might not come across for several days, or only encounter when working certain 

sectors. 
Level 3: Aircraft types encountered daily in virtually all sectors. 

Old Designator New Designator Level 1 Level 2 Level 3 
1 LR55 LJ55 D D D 
2 A3 A3 D D D 
3 C208 C208 D D D 
4 T38 T38 D D D 
5 AV8 HAR D D D 
6 KC97 C97 D D D 
7 BA41 JSTB D D D 
8 EA31 A310 D D D 
9 SF34 SF34 D D D 
10 D328 D328 D D D 
11 BE36 BE36 D D D 
12 F111 F111 D D D 
13 PA46 PA46 D D D 
14 C560 C560 D D D 
15 EA30 A300 D D D 
16 BE58 BE58 D D D 
17 MD11 MD11 D D D 
18 MDD8 MD80 D D D 
19 OV10 V10 D D D 
20 C2 C2 D D D 
21 B767 B767 D D D 
22 AC50 AC50 D D D 
23 B52 B52 D D D 
24 EA32 A320 D D D 
25 B757 B757 D D D 
26 C650 C650 D D D 
27 E120 E120 D D D 
28 L101 L101 D D D 
29 C141 C141 D D D 
30 F16 F16 D D D 
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SECTION 2: AIRCRAFT PERFORMANCE CHARACTERISTICS 

1 Old Designator New Designator 
E120 E120 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

2 Old Designator New Designator 
LR55 LJ55 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

3 Old Designator New Designator 
T38 T38 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

4 Old Designator New Designator 
OV10 V10 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 
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5 Old Designator New Designator 
L101 L101 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

6 Old Designator New Designator 
BE58 BE58 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

7 Old Designator New Designator 
T38 T38 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

8 Old Designator New Designator 
B52 B52 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 
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9 Old Designator New Designator 
KC97 C97 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

10 Old Designator New Designator 
C650 C650 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

11 Old Designator New Designator 
AC50 AC50 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

12 Old Designator New Designator 
BA41 JSTB 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 
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13 Old Designator New Designator 
B757 B757 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate:  fpm 
Engines: 
Number  
Type  

Comments: 

14 Old Designator New Designator 
A3 A3 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

15 Old Designator New Designator 
D328 D328 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

16 Old Designator New Designator 
MD11 MD11 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: -      fpm 
Engines: 
Number  
Type  

Comments:  

A7 



17 Old Designator New Designator 
C208 C208 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number . 
Type  

Comments: 

18 Old Designator New Designator 
C2 C2 

Weight Class:  
Climb Rate: ______ fpm 
Speed:  . kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

19 Old Designator New Designator 
C560 C560 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type .  

Comments: 

20 Old Designator New Designator 
F16 F16 

Weight Class:  
Climb Rate: fpm 
Speed: . kts M 
Descent Rate: 1 fpm 
Engines: 
Number .  
Type  

Comments:  

A8 



21 Old Designator New Designator 
BE36 BE36 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type J  

Comments: 

22 Old Designator New Designator 
EA30 EA30 

Weight Class: 
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

23 Old Designator New Designator 
C141 C141 

Weight Class: 
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

24 OOld Designato New Designator 
EA30 A320 

Weight Class: 
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number 
Type  

Comments: 

A9 



25 Old Designator New Designator 
MD80 MD80 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

26 Old Designator New Designator 
EA31 A310 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

27 Old Designator New Designator 
F111 F111 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments: 

28 Old Designator New Designator 
PA46 PA46 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type  

Comments:  

A10 



29 Old Designator New Designator 
AV8 HAR 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number   
Type  

Comments: 

30 Old Designator New Designator 
B767 B767 

Weight Class:  
Climb Rate: fpm 
Speed: kts M 
Descent Rate: fpm 
Engines: 
Number  
Type   

Comments:  

All 





APPENDIX B 

Summary Estimates and Number of Observations 

Designator    Familiarity 
Rating 

Speed Climb 
Rate 

Descent 
Rate 

Weight      Engine     Engine 
Class      Number     Type 

A3 
N 
Mean 
SD 

29 
.03 
.19 

15 
377 
116 

14 
2989 
1480 

13 
2627 
1104 

N 
Mode 

17 
Large 

16 
2 

16 
Jet 

A300 
N 
Mean 
SD 

29 
1.83 
.47 

27 
465 
42 

25 
2580 
865 

24 
2542 
849 

N 
Mode 

28 
Large 

28 
2 

28 
Jet 

A310 
N 
Mean 
SD 

30 
1.73 
.52 

28 
461 
40 

26 
2496 
702 

26 
2665 
822 

N 
Mode 

29 
Large 

29 
2 

29 
Jet 

A320 
N 
Mean 
SD 

30 
1.87 
.35 

29 
472 
32 

28 
2714 
766 

27 
2530 
716 

N 
Mode 

30 
Heavy 

30 
2 

30 
Jet 

AC50 
N 
Mean 
SD 

30 
1.20 
.61 

28 
196 
56 

23 
1128 
402 

23 
1309 
531 

N 
Mode 

30 
Small 

30 
2 

30 
Piston 

B52 
N 
Mean 
SD 

30 
.57 
.63 

28 
475 
38 

25 
2180 
610 

27 
2341 
760 

N 
Mode 

30 
Heavy 

30 
8 

30 
Jet 

B757 
N 
Mean 
SD 

29 
1.97 
.19 

29 
474 
30 

27 
2915 
761 

26 
2738 
860 

N 
Mode 

30 
Heavy 

30 
2 

30 
Jet 

B767 
N 
Mean 
SD 

30 
1.90 
.31 

28 
480 
35 

28 
2893 
762 

27 
2807 
873 

N 
Mode 

30 
Heavy 

29 
2 

29 
Jet 

BE36 
N 
Mean 
SD 

29 
1.55 
.51 

25 
163 
21 

26 
1006 
254 

26 
1193 
502 

N 
Mode 

29 
Small 

29 
1 

29 
Piston 

BE58 
N 
Mean 
SD 

30 
1.53 
.51 

29 
191 
32 

26 
1096 
293 

27 
1250 
388 

N 
Mode 

30 
Small 

30 
2 

30 
Piston 

C141 
N 
Mean 
SD 

30 
.87 
.63 

24 
450 
38 

27 
2320 
821 

27 
2204 
691 

N 
Mode 

29 
Heavy 

29 
4 

29 
Jet 

Bl 



Designator    Familiarity      Speed        Climb       Descent 
Rating Rate Rate 

Weight      Engine     Engine 
Class      Number      Type 

C2 
N 
Mean 
SD 

29 
.14 
.35 

11 
320 
113 

9 
1628 
762 

9 
1522 
616 

N 
Mode 

11 
Large 

11 
2 

11 
Jet/Turbo- 

Prop* 

C208 
N 
Mean 
SD 

29 
1.21 

.68 

29 
177 
39 

27 
981 
286 

24 
1010 
297 

N 
Mode 

29 
Small 

29 
1 

29 
Piston 

C560 
N 
Mean 
SD 

29 
1.90 

.31 

27 
393 

63 

23 
1985 
602 

25 
2160 

843 

N 
Mode 

29 
Large 

29 
2 

29 
Jet 

C650 
N 
Mean 
SD 

30 
1.83 

.38 

27 
472 

40 

28 
3148 
1127 

28 
3166 
1167 

N 
Mode 

30 
Large 

30 
2 

30 
Jet 

C97 
N 
Mean 
SD 

30 
.27 
.58 

19 
376 
105 

18 
1892 
698 

18 
2103 

793 

N 
Mode 

21 
Heavy 

20 
4 

20 
Jet 

D328 
N 
Mean 
SD 

29 
.62 
.82 

18 
272 

64 

16 
1897 
796 

16 
1847 
744 

N 
Mode 

20 
Large 

20 
2 

20 
Turbo- 

prop 
E120 

N 
Mean 
SD 

30 
1.20 

.66 

24 
258 

28 

17 
1347 
221 

26 
1654 
534 

N 
Mode 

29 
Large 

27 
2 

28 
Turbo- 

prop 
F111 

N 
Mean 
SD 

30 
.27 
.58 

21 
500 

35 

22 
4005 
1464 

25 
4540 
2272 

N 
Mode 

27 
Large 

28 
2 

28 
Jet 

F16 
N 
Mean 
SD 

29 
1.17 

.71 

24 
500 

41 

20 
4685 
1414 

24 
5333 
2448 

N 
Mode 

30 
Large 

30 
1 

29 
Jet 

HAR 
N 
Mean 
SD 

30 
.14 
.38 

24 
473 

62 

23 
3961 
1375 

24 
4221 
1731 

N 
Mode 

27 
Large 

28 
2 

28 
Jet 

JSTB 
N 
Mean 
SD 

29 
1.31 

.71 

27 
305 

84 

22 
2052 

686 

24 
2150 

843 

N 
Mode 

28 
Large 

27 
2 

28 
Turbo- 

prop 
L101 

N 
Mean 
SD 

30 
1.43 

.68 

27 
492 

33 

25 
2284 

550 

28 
2386 

739 

N 
Mode 

29 
Heavy 

29 
3 

29 
Jet 

Bimodal 

B2 



Designator    Familiarity      Speed        Climb       Descent 
Rating Rate Rate 

Weight      Engine     Engine 
Class      Number      Type 

LJ55 
N 
Mean 
SD 

30 
1.77 
.50 

29 
464 
39 

26 
3502 
1108 

26 
3633 
1320 

N 
Mode 

30 
Large 

29 
2 

30 
Jet 

MD11 
N 
Mean 
SD 

29 
1.59 
.68 

28 
478 
42 

27 
2478 
615 

27 
2537 
730 

N 
Mode 

29 
Heavy 

29 
2 

29 
Jet 

MD80 
N 
Mean 
SD 

30 
1.93 
.25 

29 
453 
27 

24 
2144 
429 

26 
2315 
716 

N 
Mode 

30 
Large 

30 
2 

30 
Jet 

PA46 
N 
Mean 
SD 

30 
1.33 
.48 

26 
203 
37 

25 
1180 
358 

24 
1265 
447 

N 
Mode 

27 
Small 

27 
1 

27 
Piston 

SF34 
N 
Mean 
SD 

30 
1.30 
.65 

25 
253 
29 

22 
1673 
388 

20 
1615 
409 

N 
Mode 

27 
Large 

27 
2 

27 
Turbo- 
prop 

T38 
N 
Mean 
SD 

30 
.93 
.87 

26 
488 
44 

22 
5007 
1505 

25 
5280 
2156 

N 
Mode 

29 
Small 

29 
2 

30 
Jet 

V10 
N 
Mean 
SD 

30 
.13 
.43 

20 
224 
47 

21 
1412* 
672 

20 
1425 
535 

N 
Mode 

23 
Small 

23 
2 

23 
Turbo- 
prop 

B3 

*U.S. GOVERNMENT PRINTING OFFICE:2000-569-418 


